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The phenomenon of soft and hard loss of stability of equilibrium positions and periodic trajectories in 

typical one-parameter families of Hamiltonian systems is investigated. 

1. THE POSITION OF EQUILIBRIUM 

THE SPECTRUM S of the linearization matrix contains the basic information about the stability of a 
position of equilibrium of a system. In Hamiltonian systems the set SC C is symmetrical about the 
real and imaginary axes. The elements of S are the roots of the characteristic polynomialf(A’) and 
are known as the characteristic values or eigenvalues of the position of equilibrium. 

Suppose we have a one-parameter family of autonomous Hamiltonian systems with n degrees of 
freedom, with phase space M and Hamiltonians H,; E is a parameter taking values in the 
neighbourhood of zero. Let X(E) EM be a smooth family of positions of equilibrium. Assume that 
the eigenvalues of the position of equilibrium x(O) are rfriwr , , . . , kiw, , where wl, . . , o, are real 
and non-zero. We shall assume further that w1 = w2 = w and that the frequencies 1 w 1, 1 w3 1, . . . , 
1 co, I are pairwise distinct; as E goes through zero two pairs of imaginary eigenvalues of the position 
of equilibrium x(e) “collide” at the points *iw and begin to form a quadruple fa +ip, cQ#O. We 

note that a necessary condition for this bifurcation to occur is that the Jordan form of the 
linearization matrix of the system at x (0) contains a pair of Jordan blocks. 

Under the above assumptions, if E is negative but small in absolute value, the position of 
equilibrium X(E) will be stable in the linear approximation. As the parameter E goes through zero, 
however, it will lose its stability. It can be shown that in typical one-parameter families of 
Hamiltonian systems a position of equilibrium cannot lose its stability in any other way. 

One may think that a position of equilibrium will destabilize if two imaginary eigenvalues ?iw collide at zero 
and then diverge along the real axis. However, bifurcation of this kind does not take place as a rule, because at 
the time of collision the position of equilibrium collides with another position of equilibrium, becomes 
degenerate and, when the parameter varies further, disappears [l]. The position of equilibrium may fail to 

disappear if the system possesses a certain symmetry. 
Any relation of the form 

kw+k3a3 +...+k,q,=O 

wherek,k3,..., k, are integers, will be called a resonance of order I k I + I k3 I + . . . + I k, I. 
Let D, be the discriminant of the characteristic polynomial fE (h2) of the position of equilibrium 

X(E), and U,,, (a> 0) the family of neighbourhoods 

u E,Q = jxEM: dist(x,x(e))<(YI 

where the distance is understood in some Riemannian metric on M. 
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Lemma 1. Assume that the frequencies w, w3, . . . , on satisfy no resonances of orders less than or 
equal to four, and that dD,lde lrEO # 0. Then, for every E in some neighbourhood of zero, there is a 
neighbourhood of X(E) in M in which one can introduce local coordinates p, q, y, x; p = (pl, p2), 

q = (41, qz), y = (YI, . . . , yn--21, x = (x1, . . . , X,-Z) such that: 
(a) The pairs of variables p and q; y and x are canonically conjugate; 
(b) The coordinates of x (E) are zero; 
(c) The following equality holds: 

(1.1) 

where 

G= (a + e&N(paq, - ~142) + 2~’ --wWq2/2 + 

+42t42 +wp24, -P142)+Q21, R@)>O 

Gk = (ok+2 + 4+2W)(y: +&/2 +A&: +x:j2 

G’=r04 +Os, O,=Ol(p,4*Y,r); p2 =p: +p:, q2 =4: +4: 

(0, is a function whose Maclaurin series begins with terms of degree at least I). 

(1.2) 

(1.3) 

Remarks. 1. When n = 2 the functions Gk and variables y, x do not appear in H, . 
2. The assumptions of Lemma 1, and also the inequalities A # 0, Ak#O, 1 Sk Sn - 2, are the conditions of 

general position; that is, they are satisfied by typical one-parameter families H, . 
3. The eigenvalues of the position of equilibrium X(E) are 

*iw, (c), . . . , fiWn(L) 

wL(e) = (w + EW’)’ f [ -Ileg(e)(w + EW’)’ - 16e’g’(c) ] ‘, k = 1,2 

wk(e)=wk+ewi(e), f=3,...,n 

4. There is no loss of generality in replacing A by sgnA/8. 
5. If n = 2 and A#0 then, for negative E of small absolute value, the positions of equilibrium X(E) are 

Lyapunov stable. 
6. If n>2, A #O and Ak#O, k = 1, . . . , n - 2, then, for negative E of small absolute value, the positions of 

equilibrium x (e) are metrically stable, in the following sense: for any p > 0 there exists (Y > 0 such that a solution 
with initial data in a set V,,a C U,,a will always remain in the neighbourhood UE,s, and moreover 

bm 
P-0 

P(Vc,a)/P(Ue,J = 1 

where p(W) denotes the measure of a set W. 

Our main theorem on the loss of stability in a position of equilibrium may be stated as follows. 

Theorem I. Under the assumptions of Lemma 1, suppose that as the parameter E is varied an 
equilibrium position of an analytic Hamiltonian system loses stability in accordance with the 
scenario described above. Then the following statements are true: 

1. If the constant A in formula (1.2) is negative then, as E goes through zero, the system undergoes 
a hard loss of (metric) stability: for any small E 2 0 there exists a set G,UC M such that, for any CY > 0, 
solutions with initial data in GFn U,, will leave a neighbourhood lJ,,,O, where oo> 0 is independent 
of e, (Y, and for a<c* 

P(G: n &.,)/c(K,,) >c > 0 (1.4) 

the constants c, c* being independent of E. 
2. If A >O and 12 = 2 then, as E goes through zero, the system undergoes a soft loss of stability: for 

small ~20, solutions with initial data in U,,a, 0 < a < (Y’ , will always remain in a neighbourhood 
u c,c,ve+a, where the constants c ‘, (Y’ are independent of E. 

3.1fA>OandAk#0,k= 1,. . ., n - 2; n 3 3, then, as E goes through zero, the system undergoes 
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a soft loss of metric stability: for small E 3 0, there exist sets Gz such that solutions with initial data in 
G: fl U,,, will always remain in a neighbourhood Ue,c,+e+a, where 

and the constant c’ is independent of E. 

Corollary. Under the assumptions of Theorem 1, if n = 2, E = 0 and A >O, the position of 
equilibrium is Lyapunov stable if n = 3, A > 0 and Ak# 0 (k = 1, . . . , n - 2), the position of 
equilibrium x (0) is metrically stable. 

Informally speaking, Theorem 1 states that in bifurcations of the type described above there are 
two possible destabilization scenarios. If A < 0 stability is lost all at once: when E 2 0 solutions near 
the equilibrium position leave any neighbourhood of the order of unity. If A > 0 the instability 
develops gradually and is practically negligible at small E > 0. 

Remarks. 1. The term “metric stability” was introduced by V. I. Arnol’d (21. The earliest studies of the 
effects that we call “hard” and “soft” loss of stability in positions of equilibrium of systems of differential 
equations that depend on parameters are due to Poincare and Andronov. 

2. It has been proved [3] that a position of equilibrium with n = 2, E = 0, A >O is formally stable, and that the 
position x (0) is unstable in the case IZ = 2, A < 0. 

3. It has been shown [4, 51 that the position of equilibrium with n = 2, E = 0, A >O is Lyapunov stable; 
however, the proof in [4] involves an error-the integral defining the action variable is not evaluated correctly. 

4. It is probably possible to put c = 1 in (1.4). 
Let us consider the planar circular restricted three-body problem. In non-dimensional variables, the 

Hamiltonian depends on a single parameter-the mass of Jupiter 06~ 62. For every EL, the system has a 
position of equilibrium-a triangular point of libration. It is known that for 0~ CL< pi, pl (1 - p,) = l/27, 
pi = 0.03852. . ., the position of equilibrium is stable in the linear approximation. Moreover, for all but two 
values of p in the interval (0, pi), the triangular points of libration are Lyapunov stable [6]. As the parameter p 
passes through the value pi, the position of equilibrium bifurcates as described here [7]. Define E = p - pI and 
apply Theorem 1. In this case n = 2. Since the characteristic polynomial is h4 + A2 + 27/.~( 1 - ~)/4, it follows that 
d/d&D, = -27(1 -2p1)<0. It has been shown [7] that A = 0.603.. . >O. Thus, as p goes through the 
critical value pi, the triangular point of libration undergoes a soft loss of stability. 

2. PERIODIC SOLUTIONS 

The stability of a periodic solution in the linear approximation is determined by the structure of 
the spectrum S* of the monodromy matrix. In Hamiltonian systems the set S* CC is symmetrical 
about the real axis and the unit circle; i.e. for any CL E S * the numbers fi, p-l and p-i are also in S * . 
The elements of S* are the roots of the characteristic polynomial f*(p) and are known as 
multipliers. Unity is always not less than a double root off*. 

Suppose we have a one-parameter family of autonomous Hamiltonian systems with n degrees of 
freedom phase space M and Hamiltonians H T ; E is a parameter taking values in a neighbourhood of 
zero. Let -y(e) be a family of periodic solutions which is smooth with respect to E. 

Even in an individual autonomous Hamiltonian system, the periodic solutions form families; but 
since such families are generally parameterized by the energy, this case is easily reduced to the 
previous one (families Y(E), Hz). 

Let the multipliers of a periodic solution y(O) have the form exp(k2rior), . . . , exp(+2r&), 
wherewr,. . ., w,arereal,o,=1.Letusassumethatwl=W2=Wandforany3~1,m~n-1 

wkw,FZ, w,, +,,4z, 2wgz, 2Wl4Z 

Suppose that as E goes through zero two pairs of multipliers Y(E), lying on the unit circle in the 
plane C, collide at points exp(+2+o) and leave the circle, becoming a quadruple of the form 
exp(fa+@), aER\{O}, p/rER\Z. Thus, for negative E of small absolute value the periodic 
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solutions Y(E) are orbitally stable in the linear approximation; when the parameter goes through 
zero they lose stability. 

Any relation of the type 

ko+kJuj +...+k,o,=O (2.1) 

where k, k3,. . ., k,, are integers, will be called a resonance of order ( k I+ ( k3 I+ . . . + ( k,_l (. 
The characteristic polynomials f:(p) of periodic solutions Y(E) are reciprocal, i.e. 

f,*(p) = p*“f:(p-‘). In addition, f:(l) = 0. Consequently, the equation f:(p) = 0 is equivalent to 
the equation (p - l)*~~ (p + p-i) = 0, where qc is a polynomial of degree n - 1. Let 0: denote the 
discriminant of qE. 

Let E,, , (Y > 0, be a family of neighbourhoods of the form 

u E,(I= i XEM: dist(x,r(e))<al 

where the distance from a point x to the curve Y(E) is understood in some Riemannian metric on M. 

Lemma 2. Assume that the frequencies W, w3, . . . , w, do not satisfy resonances of orders less 
than or equal to four and d/de ) .+DT # 0. Then, for each E in some neighbourhood of zero, one can 
introduce local canonical coordinatesp, q, y, x, s, I&P = (pl, p2), q = (ql, qz), y = (yl, . . . , Y~_~), 
x= (Xl,. . .) x,-~), I,!I = $mod2r, such that 

(a) the pairs of variables p and q, y and X, s and $ are canonically conjugate; 
(b) the curve -y(e) is defined by the equations p = q = 0, y = x = 0, s = 0; 
(c) the following relationships hold: 

H,’ = 

G’=eOg to5 +o(s*)+so*, o,=ol(p,q,y,x) 

where the functions G and Gk are given by (1.2), (1.3) and T(E) is the period of Y(E). 

Remarks. 1. Physical considerations dictate that II 23. If n = 3 the functions Gk and variables y, x do not 
appear in the Hamiltonian HT. 

2. If A # 0 and Ak # 0, 1 C ks n - 2, then for small negative E of small absolute value the trajectories -y(e) are 
orbitally metrically stable in the sense of Remark 6 to Lemma 1. 

Theorem 2. Under the assumptions of Lemma 2, suppose that as the parameter E is varied a 
periodic trajectory y of an analytic Hamiltonian system undergoes a bifurcation of the type 
described at the beginning of Sec. 2. Then the following statements hold. 

1. If the constant A in the Hamiltonian G is negative then, as the parameter E goes through zero, 
the system undergoes a hard loss of metric orbital stability: for any small ~20, there exists a set 
G,“C M such that, for any a>O, solutions with initial data in G,“n U,,, will leave a neighbourhood 
II E,ag, where (Y~>O is independent of E, (Y, and for CY<C* we have p(G,Un U,,,)lp(U,,,)3c>O. 

2.1fA>OandAk#O(k=1,..., IZ - 2) then, as E goes through zero, the system undergoes a soft 
loss of stability; for small ~30, there exist sets Gz such that solutions with initial data in Gz rl U,,, 
will always remain in a neighbourhood UE,ct~c+ol, where 

and the constant c’ is independent of E. 
Let us consider a triangular solution of the planar elliptic restricted three-body problem. The 

problem has two parameters: the mass of Jupiter p and the eccentricity e of elliptic motion in the 
Sun-Jupiter system; the Hamiltonian H is a periodic function of time t. The problem may be 
reduced to an autonomous problem with three degrees of freedom if we consider t as a phase 
variable, introduce momentum s as a variable canonically conjugate to t and a new time variable r, 
and consider the Hamiltonian H-s. 
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Numerical techniques have been used [8] to construct the domain of orbital stability of the 
triangular solution in the linear approximation in the rectangle {(p, e): 0s~~ l/2, O=~ed l}. One 
of the components I of the boundary of this domain begins at the point (p, e) = (pi, 0) (see Sec. 1) 
and enters the domain of positive e values. As the parameters vary along the straight line e = 0 the 
system leaves the stability domain-this was discussed in Sec. 1. At e = 0 the triangular solution 
becomes a point of libration. If one nevertheless considers points of libration as 2rr-periodic 
solutions, then as the parameter p goes through pl the system undergoes a bifurcation as described 
in Sec. 2. 

Let us verify that the assumptions of Theorem 2 are satisfied. Since the frequency w is found from 
the equation o4 - w2 + l/4 = 0 (see Sec. 1) and is equal to *l/V?, there are no resonances (2.1). 
That dD T/de(O) # 0 follows from the fact that dD,lde(O) ZO. The inequality A >O was also 
discussed in Sec. 1. Consequently, the assumptions of Theorem 2 are satisfied if e = 0. 

Let us assume now that the system leaves the stability domain not along the straight line e = 0, but 
along some curve (+ = {P(E), e(e)} which cuts I transversally at E = 0, in a point close to (pr, 0). By 
continuity, the assumptions of Theorem 2 will continue to hold. Thus, as the parameters CL, e vary 
along o, the triangular solution of the restricted planar elliptic three-body problem undergoes a soft 
loss of metric orbital stability at e = 0. 

3. NORMAL FORM OF FAMILY He 

We shall now prove Lemma 1 and the statements made in Remarks 4-6 thereafter. The proof of Lemma 2 is 
analogous, using normal forms of the Hamiltonians in the neighbourhood of a periodic solution [9]. 

We begin the proof of Lemma 1 with the case E = 0. We may assume that the canonical local coordinates on 
M have already been introduced, in such a way that the equilibrium positions X(E) are situated at zero. Then 
the Maclaurin expansion of H, begins with quadratic terms (it may be assumed that H,(O) = 0). The quadratic 
part of H, at E = 0 may be written as follows [lo]: 

H(2) = 
n-2 Y;+X; 

0 w(p,q, -P,qa)+b’+ z Wk+2T 
k=l 

Using versa1 deformations iF@) in the class of quadratic Hamiltonians [ 1, 111, we obtain the canonical form of 
the quadratic part of H, : 

He(2) = H(2) 
n-2 y;+w; 

0 + eW’@)f Pa41 - PI 42) - G(c) 4’ + k5I e++2(e) - 
2 

The condition g (0) > 0 follows from the stability of the equilibrium at E < 0 and the inequality dD, /de(O) # 0. 
Using the fact that there are no low-order resonances among the frequencies w, 0,) . . . , w, and the Normal 

Form Theorem for Hamiltonians depending on a parameter [ 121, we reduce H, to the form 

where Hc4) is a homogeneous form of degree 4. 
Finally, a canonical change of variables, leaving y, n unchanged and affecting only p and 4, reduces the 

Hamiltonians to the form of (1.1) (see [3]). Th is completes the proof of the lemma. 
The assertion of Remark 4 is proved as follows. The change of variables 

p’=ap, q’=aq, y’=cay, x’=ax, a = I :;A ,-y1 if “,;“, 

leaves the system Hamiltonian, and in fact the new Hamiltonian 

H; ( p’, q’. y’, x’, e) = d&C p. q. Y, x, ~1 

will have the same form as H, . However, the coefficients Ak, B, C in the functions Gk, G are multiplied by a 
positive constant and A is replaced by sgnA/S. 
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The assertion of Remark 5 follows from a theorem on the stability of positions of equilibrium of Hamiltonian 
systems with two degrees of freedom [2,13]. 

The metric stability in Remark 6 follows from the fact that, in a small neighbourhood of zero, for small l < 0, 
the system with Hamiltonian H, has a large number of invariant tori [2]. 

4. BIFURCATION OF EQUILIBRIUM POSITIONS 

We will now outline the main steps in the proof of Theorem 1. We will begin with part 1. 
Consider the Lyapunov function 

n-2 

v=Plql +P242 - kTl 0: +x;> 

Since 

dV/& = 4p2 + 2qz [- 2Aq2 + eg(e) + B( pzq, - plq?) + 2cp2] + eu4 + 05 

it follows that dV/dt>O for A < 0 and small ~20 in U,:, = U,,, n { V>O}. Thus V will increase 
along a trajectory with initial data in r!J,:, , as long as the trajectory remains in U,,, . In addition, 

/-@&)~P(G,a) ac>O, since the sets { V>O} and U,,, are the interior of a cone and a sphere, 
respectively, with identical centres of symmetry. 

To prove parts 2 and 3 of Theorem 1, we first transform Z!Z, , by making the following change of 
variables one after the other: 

q=S”q’, p=Sp’, x = S3’4 ficos& y = 6% asinE 

4; =P’l’-q;l, s; =p;‘-4;19 Pi =(phmL p; =(p;‘+&)/2 

pz = fisinlpk, qg = ficosvk, k = 1,2 

Pl =r1, P2 =-r1 +r2, 9, =a +q3, $2 =cp2 

(4.1) 

(the last three changes leave n, .$ invariant). 
As a result we obtain a Hamiltonian system with Hamiltonian He,6 (p, $, 7, 5) = F3’*H, (p, q, y, 

x). 
Before explicitly writing out H,,, , we will introduce some assumptions. 
1. In what follows we will assume that the parameter 6 is confined to the interval 

OG2EG8<& 

where So > 0 is sufficiently small. 

(4.2) 

2. We assume throughout that g(e) = 1; otherwise, we need only substitute E+ l g(e). 
3. In view of the inequality A >O and Remark 4 to Lemma 1, we may assume that A = ?h. 
Thus, we have 

H E.6 =F,(P2,7),E)+SnF,(P,J,1, 

n-2 

Fo = .-up2 + Ic (wk+2 + E4+2(W rlk 
k=l 

F, =(I - 3(2P, +p2)+2(1+ ~)\lPdPl +p2) sinJ/i + 

+(2pl +pz - ~JP,(PI +P2)sinJ/~12 
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-x 0 *fi 
FIG. 1. 

The Hamiltonian H,,, is an analytic function of the variables 

6 G-G 6.. . ,4iz 9, 5. 

Up to terms of order 6, the system is a composition of a fast (unperturbed) system and a slow one 
(with Hamiltonian Fi). The analysis of Fl requires cumbersome arguments. 

The main results are as follows. The Hamiltonian Fl depends on p2; we may assume that 
- 1 d p2 d 1. In addition, since 

Fl(p,,Pz,J/I,E/S)=F,(pl +p2, -Pz,J/1,E/b) 

we may confine our attention to values of p2 in [0, 11. The level curves of Fl for fixed p2E [0, 11, 
E/SE [0, i/2] (the phase portrait of the slow system) are shown in Fig. 1. 

The phase space { ($i , pi) : pi 3 0, I,!Q mod2v) is a closed half-cylinder. All non-empty non-critical 
levels F1 = const are connected and diffeomorphic to circles. For each assignment of parameter 
values, Fl has a minimum on the axis $i = -r/2. Moreover, there is yet another critical level 
F, = F, = (1 - E/S) h + p2’/2, which is the union of the circle p1 = 0 and a singular curve that touches 
the circle at the points (- 7r, 0) and (0,O) ( see Fig. 1). Since $i, p1 are in fact polar coordinates, the 
circle {pi = 0, I& mod2n) may be considered as a single point, so that the level Fl = F, is also an 
invariant circle of the slow system. We now define the action variable as 

Let @( . , p2, 48) be the function inverse to Ii ( * , pz , ~46) for fixed values of p2, E/S. Essentially, Cp 
is just the slow Hamiltonian expressed in terms of Ii, p2, e/S. 

Let Z,, cu>O, be a set of the form {(I,$, pl): OS~~S(Y}. 

Lemma 3. Positive constants c,, ~2, c3, c; , c4 exist such that for any - 1s p2 G 1,O S 466 ?h: 
1. The subset X = (0 <Ii < c2} of the phase half-cylinder satisfies the condition Zi CXC Z,, . 
2. For anyZiE[O, c2], 

c3 Q aaqaz, <c; , 07 I a2qaz: I bc‘j 

Let Ii, 19~ be action-angle variables in the system with Hamiltonian Fl . The transformation pl, 
$J*+ II, 19~ is given by a generating function S(pi , aI, p2,~/8). The change of variables pl, p2, $i, 
I,!J~+ Ii , Z, , 6i , S2, by means of the generating function p2 13~ + S, defines action-angle variables in 
the system with Hamiltonian -wpz + V?SF, . Under these conditions Z, = p2. The Hamiltonian H,,a 
in variables I, 19, n,t becomes 

H :,a =F~(z2,77,E)+6%(1, ;)+8F;(1,6. ;.sj+a 
d, 

F3(77)+62Fm9,17,~, $96) 

A canonical change of variables leaving 7, 5 unchanged will confine the dependence on the 
variable S2 to terms of order S2. The Hamiltonian H:,* then becomes 

H:),6 = F,(Zi, q, E) t 6%qZ’, I) + w;‘(z’,9;, ;, a)+a’~F,(r))+62~~(1’,9’,rl,~, I,6) 

We now adjust the variables I’, v’ so that they become action-angle variables in the system with 
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Hamiltonian -oZ$ + X6D + SF”. The original Hamiltonian written in terms of the new variables, 
will become 

Zf;,; = F()(I;‘, n, E) + iVW(Z;‘, i, 6) + 6% Fj(n) + SV:‘(Z”,0”, ?I, [, 6,s) (4.3) 

cp’(Z, E/b, 6) = @(Z* E/6) + O(S H ) (4.4) 

The system with Hamiltonian (4.3) is integrable to within O(S’). The unperturbed system (i.e. 
the system with Hamiltonian Fa) is degenerate and iso-energetically degenerate, but the iso- 
energetic degeneracy may be eliminated by terms X&D’ and S3’*Fs for I” values such that 
6’*WldZf # 0. Since W is analytic, almost all I” satisfy this condition. 

Let Vf,G be a neighbourhood of the equilibrium position X(E), of the following form: 

v$= l(P,JI,rZ,E): IPZI<P2/2, 17)Jq2/2, Z=l,Zk=l,...,n-21 

and let IV!,& be the closure of the set of points in the phase space that lie on invariant roti T, of the 
system with Hamiltonian F. + #‘*a’ + S3’*F3 such that T, rl Vf,, # 4. Obviously, there is a constant 
c, > 0 for which 

Pi,6 = w:,, = vf$ 

In addition, analysis of the change of variables (4.1) p, q, y, x-p, I), 77, (gives 

(45) 

,Vlfi 
E,6 C u,,, c vet;@; c6.c7 >o, O<a<const. (4.6) 

Let L,, be the energy level {HK, = h} and Z.&h the measure induced on Lh by some metric of the 
phase space, such as 

Lemma 4. Functions &(S) 20, lim&(S) = 0 exist as 6+0, k = 1, 2, such that for any E, 6 
satisfying conditions (4.2) the majority of tori T,C Wi,6 do not disintegrate, but are slightly 
deformed into invariant tori TV(e, 6) of the perturbed system [i.e. the system with Hamiltonian 
(4.3)], by a deformation of at most di (6); that is to say, TJE, S) can be derived from T, by subjecting 
all its points to a translation by at most di (6). Moreover, for h E [-w/4, w/4], the measure of the set 
XE,6 C IJ’,,~ II Lh of all points not situated on invariant tori of the unperturbed system is at most 

d2(6)0E,SnL,). 
The proof of Lemma 4 uses standard techniques of KAM-theory. Similar results have been proved before 

(see, e.g. [14]). The proof relies on uniform estimates for the derivatives of Cp’, similar to those obtained in 
Lemma 3; these estimates follow easily from (4.4). One also uses the analyticity of the Hamiltonian ZZTB and 
the estimate / FlI< c5 in Vg, . One obstacle in the proof is the fact that the derivative &D’/8Z: may vanish at 
certain points. One must therefore first prove, fixing -y> 0, that tori T, for which 1 ~?@‘/dlT ) 2 y are preserved, 
and then let y go to zero. Iso-energetic reduction effects the passage to the energy level Lh . The details of this 
proof will be omitted. 

Let O<e<6a/2 and O<a<(&-2e)/cg, where c9 is a positive constant, co5max{c,, 2). Set 
S = ~(a+ E). Then, obviously E, 6 will satisfy conditions (4.2). By (4.6), 

uc,a C V$a’6 c vc”,p* C v:,, 

Moreover, if c9 is sufficiently large, then 1 Hi:, ( <o/4 in the neighbourhood Czp and we can 
apply Lemma 4. 

Part 2 of Theorem 1 may now be proved as follows. Take 80 so small that &(a) < dk(&) < 1/2, 
k = 1, 2. Then the surfaces Lh that intersect the neighbourhood V23 will contain “many” in- 
variant tori T”(E, 8). Since the number IZ of degrees of freedom is 2, the tori T”(E, S) divide the 
energy levels Lh . If c9 is large enough, any point of V :p will lie inside one of the tori TV(e, 6). By 
Lemma 4 and the inclusion relation (4.5), Tv(e, 6) C V$$‘!* Consequently, solutions with initial 
data in U,,, will not leave the neighbourhood 
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Lemma 4 and the inclusion relation (4.5), T”(E, 6) C V$‘!’ Consequently, solutions with initial 
data in U,,, will not leave the neighbourhood 

as required. 
The proof of part 3 of Theorem 1 is similar. We consider an arbitrary small r>O, and take 8, so 

that dk(8) < dk(&) < y, k = 1,2. Then the neighbourhood U,,, will contain a set of measure greater 
than (1- r)p(U_), each of whose points lies on an invariant torus T,(E,@ C Uc,c+a+E. 

I wish to thank V. V. Kozlov and M. B. Sevryuk for many discussions and comments. 
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